Emerging ionizing and non-ionizing radiation treatment for musculoskeletal disorders and malignancies

Document Type: Review article

Authors

1 The Persian Gulf Nuclear Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr, Iran

2 Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran

3 Department of Diagnostic Radiology, Keck Faculty of Medicine, University of Southern California (USC), Los Angeles, USA

4 Department of Interventional Radiology, Faculty of Medicine, Mercer University, Savannah, GA, USA

5 Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran

Abstract

The musculoskeletal (MSK) system includes bone, cartilage, fat, muscles, blood vessels, neural tissue, and other connective tissues. As aging occurs, the incidence of musculoskeletal disorders increases. Benign bone and soft tissue pathologies are more common than malignant ones. Although some MSK abnormalities can be self-limited, in the cases of severe defects or impairment of the potential restoration, intervention by novel methods such as radiation therapy may be required along with the main treatment, which is surgery in most cases. Radiation is categorized as non-ionizing and ionizing. Non-ionizing radiation is longer wavelength, lower frequency, and lower energy, while ionizing radiation is short wavelength, high frequency, and higher energy that able to destroy the cells. Utilizing these methods can have both symptom-relieving and curative effects.
One of the non-ionizing radiation types comes in the form of Low Level Laser Therapy (LLLT), which is a non-aggressive, non-ionizing, monochromatic and electromagnetic high-concentrated beam. LLLT has an essential role in ATP production, reducing inflammation, pain relief, wound healing, and muscle function. The development of ionization radiation therapy by radionuclides as a targeted therapy in nuclear medicine, boron capture neutron therapy and proton therapy as external radiation therapy can play a critical role in treating bone and soft tissue malignancies, especially in pediatric oncology. The purpose of this paper is to review the efficiency of LLLT, bone-seeking radiopharmaceuticals, proton, and boron capture neutron therapy for the treatment of bone and soft tissue pathologies and malignancies.

Keywords


1. von Mehren M, Randall RL, Benjamin RS, Boles S, Bui MM, Ganjoo KN, et al. Soft tissue sarcoma: clinical practice guidelines in oncology. J Natl Compr Canc Netw 2018 May;16(5):536-63. https://www.ncbi.nlm.nih.gov/pubmed/29752328

2. Lee CT, Bilton SD, Famiglietti RM, Riley BA, Mahajan A, Chang EL, et al. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int J Radiat Oncol Biol Phys 2005;63(2):362-72.

3. Rankin KS. Basic science of musculoskeletal tumours. Orthopaedics Trauma 2017;31(3):216-20.

4. Chung H,  Dai T, Sharma SK,  Huang YY,  Carroll JD,  Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012;40(2):516-33.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288797/

5. Kandathil A, Subramaniam RM. PET/Computed Tomography and precision medicine: musculoskeletal sarcoma. PET Clin 2017;12(4):475-88.  https://www.ncbi.nlm.nih.gov/pubmed/28867117

6. Cotler HB, Chow RT, Hamblin MR, Carroll J. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2015;2(5):pii: 00068.  https://www.ncbi.nlm.nih.gov/pubmed/26858986

7. Gür A, Karakoç M, Nas K, Cevik R, Saraç J, Demir E. Efficacy of low power laser therapy in fibromyalgia: a single-blind, placebo-controlled trial. Lasers Med Sci 2002;17(1):57-61. https://www.ncbi.nlm.nih.gov/pubmed/11845369

8. Mat S, Ng C, Tan M. World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (WCO-IOF-ESCEO 2015): Poster Abstracts. Osteoporos Int 2015;26(1):S71-S380.

9. Camillo de Carvalho PTD, Pinto Leal-Junior EC, Araruna Alves AC, de Melo Rambo CS, Malosa Sampaio LM, Santos Oliveira C, et al. Effect of low-level laser therapy on pain, quality of life and sleep in patients with fibromyalgia: study protocol for a double-blinded randomized controlled trial. Trials 2012;13(1):221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543348/

10. DeLaney TF, Trofimov AV, Engelsman M, Suit HD. Advanced-technology radiation therapy in the management of bone and soft tissue sarcomas. Cancer Control 2005;12(1):27-35. https://www.ncbi.nlm.nih.gov/pubmed/15668650

11. Fisher SM, Joodi R, Madhuranthakam AJ, Öz OK, Sharma R, Chhabra A. Current utilities of imaging in grading musculoskeletal soft tissue sarcomas. Eur J Radiol 2016;85(7):1336-44.

12. Dogan SK, Ay S, Evcik D. The effectiveness of low laser therapy in subacromial impingement syndrome: a randomized placebo controlled double-blind prospective study. Clinics 2010; 65(10):1019-22.  https://www.ncbi.nlm.nih.gov/pubmed/21120304

13. Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 1996;23(5):492-6.  https://www.ncbi.nlm.nih.gov/pubmed/8783057

14. Saperia D, Glassberg E, Lyons RF, Abergel RP, Baneux P, Castel JC, et al. Demonstration of elevated type I and type III procollagen mRNA levels in cutaneous wounds treated with helium-neon laser: proposed mechanism for enhanced wound healing. Biochem Biophy Res Comm 1986;138(3):1123-8.

15. de Souza CG, Borges DT, de Brito Macedo L, Brasileiro JS. Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects. Lasers Med Sci 2016;31(9):1949-55.  https://www.ncbi.nlm.nih.gov/pubmed/27638148

16. Denegar CR, Saliba E, Saliba S. Therapeutic modalities for musculoskeletal injuries. 4th ed. US: Human Kinetics; 2015. 372 p.

17. Gam AN, Thorsen H, Lønnberg F. The effect of low-level laser therapy on musculoskeletal pain: a meta-analysis. Pain 1993;52(1):63-6.  https://www.ncbi.nlm.nih.gov/pubmed/8446437

18. Ayyildiz S, Emir F, Sahin C. Evaluation of low-level laser therapy in TMD patients. Case Rep Dent 2015;2015:424213. https://www.ncbi.nlm.nih.gov/pubmed/26587294

19. Martins F. Low-level laser therapy modulates musculoskeletal loss in a skin burn model in rats. Acta Cir Bras 2015;30(2):94-9.

20. Beckerman H, de Bie RA, Bouter LM, De Cuyper HJ, Oostendorp RA. The efficacy of laser therapy for musculoskeletal and skin disorders: a criteria-based meta-analysis of randomized clinical trials. Phys Ther 1992;72(7):483-91. https://www.ncbi.nlm.nih.gov/pubmed/1409881

21. Basford JR. Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 1995;16(4):331-42.  https://www.ncbi.nlm.nih.gov/pubmed/7651054

22. Peplow PV, Chung TY, Baxter GD. Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 2010;28(S1):S3-40. https://www.ncbi.nlm.nih.gov/pubmed/20666617

23. Toma RL, Tucci HT, Antunes HK, Pedroni CR, de Oliveira AS, Buck I, et al. Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 2013;28(5):1375-82. https://www.ncbi.nlm.nih.gov/pubmed/23296713

24. Tieppo Francio V,  Dima RS, Towery C, Davani S. Prolotherapy and low level laser therapy: A synergistic approach to pain management in chronic osteoarthritis. Anesth Pain Med 2017;7(5):e14470.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903214/

25. Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, et al. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 2011;26(3):335-40.  https://www.ncbi.nlm.nih.gov/pubmed/21053039

26. Tomazoni SS, Frigo L, Dos Reis Ferreira TC, Casalechi HL, Teixeira S, de Almeida P, et al. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 1: morphological and functional aspects. Lasers Med Sci 2017;32(9):2111-20.  https://www.ncbi.nlm.nih.gov/pubmed/28983756

27. Tsai Sr,  Yin R,  Huang YY, Sheu BC, Lee SC, Hamblin MR. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP. Photodiagnosis Photodyn Ther 2015;12(1):123-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361381/

28. Starkey C. Therapeutic modalities. 4th ed. Philadelphia, PA: FA Davis Company; 2013. 448 p.

29. Ferraresi C, Hamblin MR, Parizotto NA. Parizotto, Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 2012;1(4):267-86. https://www.ncbi.nlm.nih.gov/pubmed/23626925

30. Reddy GK, Stehno-Bittel L, Enwemeka CS. Laser photostimulation of collagen production in healing rabbit Achilles tendons. Lasers Surg Med 1998;22(5):281-7. https://www.ncbi.nlm.nih.gov/pubmed/9671994

31. Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 2003;49(2):107-16. https://www.ncbi.nlm.nih.gov/pubmed/12775206

32. Tomazoni SS, Frigo L, Dos Reis Ferreira TC, Casalechi HL, Teixeira S, de Almeida P, et al. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 2: biochemical aspects. Lasers Med Sci 2017;32(8):1879-87. https://www.ncbi.nlm.nih.gov/pubmed/28795275

33. Casalechi HL, Leal-Junior EC, Xavier M, Silva JA Jr, de Carvalho Pde T, Aimbire F, et al. Low-level laser therapy in experimental model of collagenase-induced tendinitis in rats: effects in acute and chronic inflammatory phases. Lasers Med Sci 2013;28(3):989-95. https://www.ncbi.nlm.nih.gov/pubmed/22926534

34. Merskey H, Bogduk N. Classification of chronic pain, IASP Task Force on Taxonomy. Seattle, WA: International Association for the Study of Pain Press (Also available online at www. iasp-painorg), 1994.

35. Kingsley JD, Demchak T, Mathis R. Low-level laser therapy as a treatment for chronic pain. Front Physiol 2014;5:306.  https://www.ncbi.nlm.nih.gov/pubmed/25191273

36. Hakgüder A, Birtane M, Gürcan S, Kokino S, Turan FN. Efficacy of low level laser therapy in myofascial pain syndrome: an algometric and thermographic evaluation. Lasers Surg Med 2003;33(5):339-43. https://www.ncbi.nlm.nih.gov/pubmed/14677161

37. Bingöl U, Altan L, Yurtkuran M. Low-power laser treatment for shoulder pain. Photomed Laser Surg 2005;23(5):459-64. https://www.ncbi.nlm.nih.gov/pubmed/16262574

38. Huang Z, Ma J, Chen J, Shen B, Pei F, Kraus VB. The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis. Arthritis Res Ther 2015;17(1):360.  https://www.ncbi.nlm.nih.gov/pubmed/26667480

39. Jang H, Lee H. Meta-analysis of pain relief effects by laser irradiation on joint areas. Photomed Laser Surg 2012;30(8):405-17.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412059/

40. Ahrari F, Madani AS, Ghafouri ZS, Tunér J. The efficacy of low-level laser therapy for the treatment of myogenous temporomandibular joint disorder. Lasers Med Sci 2014;29(2):551-7. https://www.ncbi.nlm.nih.gov/pubmed/23318917

41. Evcik D, Kavuncu V, Cakir T, Subasi V, Yaman M. Laser therapy in the treatment of carpal tunnel syndrome: a randomized controlled trial. Photomed Laser Surg 2007;25(1):34-9. https://www.ncbi.nlm.nih.gov/pubmed/17352635

42. Mitchell UH, Mack GL. Low-level laser treatment with near-infrared light increases venous nitric oxide levels acutely: a single-blind, randomized clinical trial of efficacy. Am J Phys Med Rehabil 2013;92(2):151-6.  https://www.ncbi.nlm.nih.gov/pubmed/23334615

43. Samoilova KA, Zhevago NA, Petrishchev NN, Zimin AA. Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels: II. healthy volunteers. Photomed Laser Surg 2008;26(5):443-9.

44. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci 2014;5(2):58-62.  https://www.ncbi.nlm.nih.gov/pubmed/25653800

45. Fikácková H, Dostálová T, Navrátil L, Klaschka J. Effectiveness of low-level laser therapy in temporomandibular joint disorders: a placebo-controlled study. Photomed Laser Surg 2007;25(4): 297-303. https://www.ncbi.nlm.nih.gov/pubmed/17803388

46. Feng J, Zhang Y, Xing D. Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 2012;24(6):1116-25. https://www.ncbi.nlm.nih.gov/pubmed/22326662

47. Tunér J, Hode L. It’s all in the parameters: a critical analysis of some well-known negative studies on low-level laser therapy. J Clin Laser Med Surg 1998;16(5):245-8. https://www.ncbi.nlm.nih.gov/pubmed/9893504

48. Chow RT, Barnsley L. Systematic review of the literature of low-level laser therapy (LLLT) in the management of neck pain. Lasers Surg Med 2005;37(1):46-52. https://www.ncbi.nlm.nih.gov/pubmed/15954117

49. Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 2015;115(3):639-47. . https://www.ncbi.nlm.nih.gov/pubmed/25417170

50. Yousefi-Nooraie R, Schonstein E, Heidari K, Rashidian A, Pennick V, Akbari-Kamrani M, et al. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev 2008;(2):CD005107.

51. White PF, Zafereo J, Elvir-Lazo OL, Hernandez H. Treatment of drug-resistant fibromyalgia symptoms using high-intensity laser therapy: a case-based review. Rheumatol Int 2018;38(3):517-23. https://www.ncbi.nlm.nih.gov/pubmed/29080932

52. Awotidebe AW, Inglis-Jassiem G, Young T. Low-level laser therapy and exercise for patients with shoulder disorders in physiotherapy practice (a systematic review protocol). Syst Rev 2015;4(1):60. https://www.ncbi.nlm.nih.gov/pubmed/25925768

53. Baxter G. Therapeutic lasers: theory and practice. New York: Churchill Livingstone; 1994. 253 p.

54. Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 2000;108(1):29-34. https://www.ncbi.nlm.nih.gov/pubmed/10706474

55. Pinheiro AL, Cavalcanti ET, Pinheiro TI, Alves MJ, Manzi CT. Low-level laser therapy in the management of disorders of the maxillofacial region. J Clin Laser Med Surg 1997;15(4):181-3. https://www.ncbi.nlm.nih.gov/pubmed/9612167

56. Hopkins JT, McLoda TA, Seegmiller JG, David Baxter G. Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 2004;39(3):223. https://www.ncbi.nlm.nih.gov/pubmed/15496990

57. Wiener N, Siegel A, Rankin B, Martin WT. Differential space, quantum systems, and prediction. UK: The MIT Press; 1966. 192 p.

58. Vollhardt KPC, Schore NE. Organic chemistry; Palgrave version: structure and function. 7th ed. UK: Macmillan International Higher Education; 2014. 1200 p.

59. Zeilig GG, Guibert R. Terra quant device for shoulder pain double blind trial. Positive Health Online 2005;113. http://www.positivehealth.com/article/energy-medicine/terra-quant-device-for-shoulder-pain-double-blind-trial

60. Pirzadeh P, Talebzadeh N, Moosavi-Movahedi AA. Quantum medicine. J Res Med 2006;30(1):73-9.

61. Barkley HT Jr, Martin RG, Romsdahl MM, Lindberg R, Zagars GK. Treatment of soft tissue sarcomas by preoperative irradiation and conservative surgical resection. Int J Radiat Oncol Biol Phys 1988;14(4):693-9. https://www.ncbi.nlm.nih.gov/pubmed/3350724

62. Levin WP, Kooy H, Loeffler JS, DeLaney TF. Proton beam therapy. Br J Cancer 2005;93(8):849-54. https://www.ncbi.nlm.nih.gov/pubmed/16189526

63. Wilson RR. Radiological use of fast protons. Radiology 1946;47(5):487-91. https://www.ncbi.nlm.nih.gov/pubmed/20274616

64. Wambersie A, Gahbauer RA. Hadrons (protons, neutrons, heavy ions) in radiation therapy: rationale, achievements and expectations. Radiochimica Acta 2001;89(4-5):245-54.

65. Cohen L, Hendrickson F, Mansell J, Kurup PD, Awschalom M, Rosenberg I, et al. Response of sarcomas of bone and of soft tissue to neutron beam therapy. Int J Radiat Oncol Biol Phys 1984;10(6):821-4. https://www.ncbi.nlm.nih.gov/pubmed/6429098

66. Schwartz DL, Einck J, Bellon J, Laramore GE. Fast neutron radiotherapy for soft tissue and cartilaginous sarcomas at high risk for local recurrence. Int J Radiat Oncol Biol Phys 2001;50(2):449-56. https://www.ncbi.nlm.nih.gov/pubmed/11380233

67. Barth RF, Soloway AH, Fairchild RG. Boron neutron capture therapy for cancer. Scientific American 1990;263(4):100-7.

68. Ferrari C, Zonta C, Cansolino L, Clerici AM, Gaspari A, Altieri S, et al. Selective uptake of p-boronophenylalanine by osteosarcoma cells for boron neutron capture therapy. Appl Radiat Isot 2009;67(7-8):S341-4. https://www.ncbi.nlm.nih.gov/pubmed/19394838

69. Chung EB, Enzinger FM. Malignant melanoma of soft parts. A reassessment of clear cell sarcoma. Am J Surg Pathol 1983;7(5):405-13.  https://www.ncbi.nlm.nih.gov/pubmed/6614306

70. Malchau SS,   Hayden J, Hornicek F, Mankin HJ. Clear cell sarcoma of soft tissues. J Surg Oncol 2007;95(6):519-22.

71. Andoh T, Fujimoto T, Suzuki M, Sudo T, Sakurai Y, Tanaka H, et al. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: trial using a lung metastasis model of CCS. Appl Radiat Isot 2015;106:195-201. https://www.ncbi.nlm.nih.gov/pubmed/26337135

72. Fujimoto T, Andoh T, Sudo T, Fujita I, Moritake H, Sugimoto T, et al. Boron neutron capture therapy (BNCT) selectively destroys human clear cell sarcoma in mouse model. Appl Radiat Isot 2013;73: 96-100.

73. Fujimoto T, Andoh T, Sudo T, Fujita I, Fukase N, Takeuchi T, Sonobe H, et al. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST). Appl Radiat Isot 2015;106:220-5. https://www.ncbi.nlm.nih.gov/pubmed/26278348

74. Rombi B, MacDonald SM, Maurizio A, Tarbell NJ, Yock TI. Proton radiotherapy for childhood tumors: an overview of early clinical results. J Nucl Med Radiat Ther 2013;4(4):1-9.

75. Harrabi S, Bougatf N, Mohr A, Haberer T, Herfarth K, Combs SE, et al. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther Onkol 2016;192(11):759-69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080304/

76. Lee CT, Bilton SD, Famiglietti RM, Riley BA, Mahajan A, Chang EL, et al. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int J Radiat Oncol Biol Phys 2005;63(2):362-72. https://www.ncbi.nlm.nih.gov/pubmed/16168831

 

77. Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 1995;31(5):1093-112.  https://www.ncbi.nlm.nih.gov/pubmed/7677836

 

78. DeLaney TF, Liebsch NJ, Pedlow FX,  Adams J, Dean S, Yeap BY, et al., Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys 2009;74(3):732-9.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734911/

 

79. Body JJ. Metastatic bone disease: clinical and therapeutic aspects. Bone 1992;13(Suppl 1):S57-S62. https://www.ncbi.nlm.nih.gov/pubmed/1581121

80. Liepe K. 188Re-HEDP therapy in the therapy of painful bone metastases. World J Nucl Med 2018;17(3):133-8.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034542/

81.https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatmentbone-marrow-stem-cell-transplants/total-body-irradiation-tbi/side-effects  https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/bone-marrow-stem-cell-transplants/total-body-irradiation-tbi/side-effects.

82. Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 2014;15(10):845-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201313/

83. Breen SL, Battista JJ. Cavity theory applied to the dosimetry of systemic radiotherapy of bone metastases. Phys Med Biol 2000;45(4):879-96.  https://www.ncbi.nlm.nih.gov/pubmed/10795978

84. Liepe K, Kotzerke J. A comparative study of 188Re-HEDP, 186Re-HEDP, 153Sm-EDTMP and 89Sr in the treatment of painful skeletal metastases. Nucl Med Commun 2007;28(8):623-30. https://www.ncbi.nlm.nih.gov/pubmed/17625384

85. O’Sullivan JM, Norman AR, McCready VR, Flux G, Buffa FM, Johnson B, et al. A phase 2 study of high-activity 186 Re-HEDP with autologous peripheral blood stem cell transplant in progressive hormone-refractory prostate cancer metastatic to bone. Eur J Nucl Med Mol Imaging 2006;33(9):1055-61. https://www.ncbi.nlm.nih.gov/pubmed/16572306

86. Palmedo H, Manka-Waluch A, Albers P, Schmidt-Wolf IG, Reinhardt M, Ezziddin S, et al. Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol 2003;21(15):2869-75. https://www.ncbi.nlm.nih.gov/pubmed/12885803

87. Tu SM, Millikan RE, Mengistu B, Delpassand ES, Amato RJ, Pagliaro LC, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 2001;357(9253):336-41. https://www.ncbi.nlm.nih.gov/pubmed/11210994